
GEOPHYSICAL MODEL OF CREEDE, COMSTOCK, SADO, GOLDFIELD
AND RELATED EPITHERMAL PRECIOUS METAL DEPOSITS

COX AND SINGER MODELS: Compilers - D.P. Klein
Creede epithermal vein (25b), V. Bankey
Comstock epithermal vein (25c),
Sado epithermal veins (25d),
and quartz-alunite Au-Ag (25e).

ŽModels with related geophysical characteristics (Cox and Singer, 1986): Au-
Ag-Te veins (22b), Polymetallic veins (22c), Hot springs Au-Ag (25a).

A. Geologic setting (Cox and Singer, 1986)
ŽContinental, usually mid-Tertiary, felsic volcanic centers.
ŽFaulted, fractured, and brecciated, andesitic to rhyolitic lavas and
tuffs, hypabyssal, porphyritic dacite to quartz monzonite intrusions.
•Deposits occur in the edifice of volcanic morphologic features, often
near edge of volcanic center, or above or peripheral to intrusions.
•Commonly associated with resurgent caldera structural boundaries.
ŽCommodities: Au, Ag, Cu, Pb, Zn

B. Geologic Environment Definition
Gravity lows are common over thick silicic volcanic rock sequences and

caldrons. The presence of a deep, low-density granitic batholith
within the basement rocks may contribute to the gravity low (Ratté and
others, 1979; Plouff and Pakiser, 1972, Steven and Eaton, 1975).

Short-wavelength magnetic anomalies are common over volcanic terranes
because of variable magnetizations and polarizations. This pattern may
contrast with an area of moderate to intense alteration that will display a
longer-wavelength low, often linear in the case of vein systems, caused by
destruction of magnetite. Local highs may be associated with hypabyssal
intrusions (Ratté and others, 1979; Wynn and Bhattacharyya, 1977; Irvine and
Smith, 1990, Doyle, 1990).

Radiometric highs may occur from regional potassic enrichment
associated with volcanism. Regional alteration patterns may also be apparent
in multi-spectral remote sensing (Marsh and McKeon, 1983; Podwysocki and
others, 1983; Duval, 1989; Watson, 1985).

Regional seismic sound velocity for volcanic sequences are low compared
to basement rock. Seismic reflections are generally incoherent and noisy
because of signal scatter by volcanic layers and structure (Hoffman and
Mooney, 1984; McGovern, 1983).

Regional resistivity is generally low for weathered and altered
andesitic to rhyolitic volcanic rocks as compared to high resistivity typical
of buried intrusions or uplifted basement or carbonate sedimentary rocks
(Frischknecht and others, 1986; Long, 1985; Senterfit and Klein, 1991).

C. Deposit Definition
There are no consistent geophysical signatures to directly identify

epithermal vein mineralization. However, several geophysical characteristics
are diagnostic of favorable structures and alteration. These characteristics
are best measured using closely spaced ground measurements (Irvine and Smith,
1990; Allis, 1990; Doyle, 1990; Johnson and Fujita, 1985; Middleton and
Campbell, 1979; Senterfit and Klein, 1992; Zonge and Hughes, 1991).

Gravity highs will be caused by felsic intrusions within flow or tuff
sequences, by structural highs of basement or carbonate rocks within the
volcanic sequence, or by silicification of otherwise relatively low-density
volcanic rock. Weak, local lows may exist over zones of brecciation or
fracturing. Weak, local highs may be found over dense silicic vein systems
hosted by more porous volcanic rocks. On deposit-scale investigations, high-
precision gravity to resolve anomalies of the order of 1 mgal (to 0.5 rarely)
would be required (Irvine and Smith, 1990; Allis, 1990; Criss and others,
1985; Kleinhampl and others, 1975; Ratté and others, 1979; Locke and De Ronde,
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1987) .
Magnetic lows will be associated with alteration; however,

discriminating such lows from the background may be difficult on a deposit
scale.

Radiometric anomalies are expected across epithermal veins because of
potassic alteration, which is common in the upper levels of veins (Marsh and
McKeonn, 1983; Pitkin and Long, 1977).

Resistivity highs flanked by resistivity lows are characteristic of a
simple and idealized quartz-adularia vein system with associated argillic to
propylitic alteration. However, there may be geologic structures and
petrologic complications that distort this ideal picture. More generally,
resistivity lows will be associated with: 1) sulfides when concentrated and
connected at about 5-percent volume or more, 2) argillic alteration, and 3)
increased porosity related to wet, open fractures and brecciation. Resistivity
highs will be associated with zones of silicification, intrusion, or basement
uplifts (Senterfit and Klein, 1992; Zonge and Hughes, 1990; Irvine and Smith,
1989; Allis, 1990; Doyle, 1990, Frischknecht and others, 1986).

High induced polarization (IP) will be associated where pyritization
has developed (Zonge and Hughes, 1991).

D. Size and Shape of deposit (Buchanan, 1981; Heald and others, 1987):

Element Shape

Vein system, or lenticular, interlaced
district

Ore deposit lenticular,
interlaced,
discontinuous

Alteration halo symmetric with the
vein system; siphon
shape in cross-
section, narrowing
with depth; capped
with siliceous sinter
that is often missing
because of erosion.

E. Physical properties

Bracketed values are averages. Source references
trailing letters. Queried values are guesses.

Property Deposit Alteration

Average Size (Range)

3 km (l-9 km) width,
7 km (2-21 km) length,
probably 2-4(?) km
depth extent.

width and length is
highly variable, but a
fraction (0.2?) of
vein system; vertical
extent of ore averages
500 m; paleodepths to
initiation of ore
(relative to original
surface) is about 400
m (200 to 700 m).

width is of the order
of 2 or 3 x the width
of the vein system,
roughly centered
linearly on the vein
system, wider on
hanging wall if
appreciable dip is
present.

are indexed with

Volcanic host
[units] [silicic - A: argillic

potassic vein] (illite-kaolin )
P: propylitic
(chlorite-minor
kaolin)
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1. Density
(gm/cm3)

2. Porosity
(percent)

3. Suscepti-
bility
( cgs )

4. Remanence
(cgs-emu/cc)

5. Resistivity
(ohm-m )

6. Induced
polarization
(IP)
(percent-
frequency
effect:PFE )

7. Seismic
sound
(Vp)
velocity
(km/s)

quartzite 2.6(29)

2-5?

negligible?

negligible?

high; greater
than 1,000?

quartzite 5.37-
5.63(6)

?

5-20?

negligible?

negligible?

A: low; less
than 10?
P: low; less
than 100?
?

lower?

rhyolite
[2.5](29)

andesite .
[2.7](29)

tuffs 1.5-2.5(14)

3-50(6,18) (fig.22)(18)

rhyolite [.3 x
10-3 ](23,27);

undifferentiated
 Tertiary
volcanic rocks:
(Arizona) .05 x
10-3 - 5 x 10-3,
(northern
Montana) [0.7
x 10- 3] ( 3 7 , 3 )

undifferentiated
 Tertiary
volcanic rocks:
(Arizona): .005
x 10-3

- 100 x
10-3, (northern
Montana) [11.1
  x 10-3]      

(37,3)

Tertiary
volcanic rocks
(Arizona): 20-
2,000 (38)

PFE > 10 with
about 2 or 3-%
disseminated
sulfides (4). Tert
iary volcanic
rocks
(Arizona):
< 5( 4 )

wet tuffs:
2.61-3.92 (6);
rhyolite:
[3:27] 2.94-
4.90(6);
volcanic
breccia:
4.22(6);
(measurements
at 0.1 kb;
anisotropy is
high (17-26% in
some rhyolites
with >10
(measured 18-
32%) porosity.
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8. Radio-
elements
K (%) K: high? K: high? moderate to
U, Th (ppm) U, Th ? U, Th, K? low?

U,Th ?

F. Remote sensing characteristics
In areas of low to moderate cover, remote sensing images in the visible

and infrared bands can be processed to identify exposures of oxidized argillic
alteration, and anomalous silicification, although there is considerable room
for non-unique discriminations for moderate to low-spectral-resolution systems
(Rowan and others, 1974, 1977; Podwysocki and others, 1983; Watson, 1985,
Watson, 1990, Watson and Raines, 1990). The basis of such discrimination are
the following:
a) In the visible through infrared wave-spectrum, ferric iron, water, and
hydroxyl complexes have narrow (about 0.1 pm) and characteristic reflective
minimums between 0.4 and 2.4 pm (Rowan and others, 1977).
b) Silica-rich assemblages have emissivity minimums near 8-10 pm (Watson and
others, 1990).
c) These reflective and emissivity minimums can distinguished with moderate
resolution (0.1 pm) airborne- or spacecraft spectral scanners.

There are often distinctive spectral waveforms for other minerals and
mineral assemblages (Hunt, 1989),
pm), spectral scanners, currently
and Raines, 1989).

that require high-resolution (.01 to .001
available only on airborne systems (Watson

G. General Comments
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Fig. 2 — Electrical resistivity data from controlled source audio-
magnetotelluric (CSAMT) data over an epithermal vein system on the northern
coast of North Island, New Zealand (adapted from Zonge and Hughes, 1991).  A)
Simplified alteration map of survey area showing the location of electrical
traverse.  B) Simplified interpretation of the alteration and veining along
the cross-section traversed.  C) Electrical pseudo-section of apparent
resistivity vs. frequency.  D) Electrical section of resistivity vs. depth
resulting from inversion of data.  On (C), the high-resistivity (>250 ohm-m)
silicified zone, bordered by anomalous lows (<100 ohm-m) forms a prominent
vertical electrical structure.  The andesitic to rhyolitic host rocks show
resistivities varying from about 5 to 500 ohm-m.
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Fig. 3 — Electrical resistivity data from controlled source aduio-
magnetotelluric (CSAMT) data over the Hishikari epithermal vein system in
Kyushu, Japan (adapted from Zonge and Hughes, 1991).  (A) Simplified geologic
section across the deposit.  B) Electric pseudo-section of apparent-
resistivity versus frequency across the deposit.  The Hishikari deposit is
within an active geothermal system.  Gold mineralization was found in veins in
the Shimanto Group.  The overall low resistivity is related to rock saturated
with hot-water.  Resistivity variations are associated with variable porosity
and temperature, with the low resistivity under sounding 18 interpreted as a
primary fracture system that continues into the mineralized vein system in the
Shimanto Group (Zonge and Hughes, 1991, p. 797).
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